PANDORE
Handbook for version 6.6

GREYC - IMAGE laboratory
University of Caen - ENSICAEN

June 4, 2014

CONTENTS 1
Contents

1 Introduction 1

1.1 Programming Language e e 1

1.2 Data Types o e 1

1.3 Object Types o o o e 1

1.4 TImage Processing Operators e 2

1.5 Image Processing Applications L L L. 2

2 Types 2

2.1 Primitive Base Types e 2

2.1.1 Primitive Types L 2

2.1.2 The Errctype. o 3

2.2 The Pandore objectso 3

2.2.1 The Basis Class Pobject oL 3

2.2.2 The Basic Objects e 3

2.2.3 The Compound Objects 4

2.2.4 The Pandore Object Types 4

2.2.5 The Pandore Object Attributes 4

2.2.6 The Pandore Object member functions.)

2.2.7 The Pandore Object Files 5

2.3 The Dimensions. e)

2.3.1 Definition 5

2.3.2 Types . ..o 5

2.3.3 Public Attributes 6

2.3.4 Construction 6

2.3.5 Consultation 6

2.3.6 File Transfer 6

24 The Points e 7

2.4.1 Definition 7

242 Types e 7

2.4.3 Public Attributes L 7

2.4.4 Construction 8

2.4.5 Consultation L e 8

2.4.6 File Transfer 8

2.5 Thelmages o e 9

2.5.1 Definition L 9

The Pandore Handbook

CONTENTS 2
2.5.2 Types . . .o e 9
2.5.3 Hierarchy 10

2.5.3.1 Public Attributes 11

2.5.4 Construction L 11
2.5.5 Allocation 11
2.5.6 Allocation from a predefined array, 12
2.5.7 Destruction 12
2.5.8 Consultation 13
2.5.9 Setting Data Values o 14
2.5.10 File Transfer 14
2.5.11 Miscellaneous Lo 14
2.6 Accessing Image Pixel 15
2.6.1 Accessing Image Pixel L 15
2.6.2 Accessing Neighbour Pixels 0L, 15
2.6.2.1 Freeman Encoding for 2D Image 15

2.6.2.2 Freeman Encoding for 3D Image 16

2.6.3 Generalized Access 18
2.7 The Region Maps e 18
2.7.1 Definition 18
2.7.2 Types e 18
2.7.3 Public Attributes 19
2.7.4 Construction e 19
2.7.5 Allocation L 19
2.7.6 Allocation from a predefined array 20
2.77 Destructiono 20
2.7.8 Consultation 20
2.7.9 File Transfer 21
2.7.10 Miscellaneous 21
2.8 The Graphs e 21
2.8.1 Definitiono 21
2.8.1.1 Node e 21

2.8.1.2 Edge 22

2.82 Typeso e 22
2.8.3 Public Attributes 23
2.8.3.1 Public Attributes of grapho 0oL 23

2.8.3.2 Public Attributes of nodes L. 23

The Pandore Handbook

CONTENTS 3
2.8.3.3 Public Attributes of edges. oL 23

2.8.4 Construction L e 24
2.8.5 Imitialisation 24
2.8.6 Destruction L 25
28.7 Addingmnodes 25
2.8.8 Deletingnodes L 25
2.8.9 Linkingnodeso 26
2.8.10 Unlinking nodes 26
2.8.11 File Transfer 26
2.8.12 Miscellaneous 27

2.9 The Collection e 27
2.9.1 Definition 27
2.9.2 Types 27
2.9.3 Construction 28
2.9.4 Destruction L e 28
2.9.5 Consultation 28
2.9.6 File Transfer e 30

3 Programming 30
3.1 Operator Programming 30
3.1.1 Atomic Operator 30
3.1.2 Operator Template File 31
3.1.3 The operator() Function L Lo 32
3.1.3.1 Writing Generic Operator Function Using Hierarchy 32

3.1.32 Value Typeo 33

3.1.3.3 TypeLimits oo 33

3.1.3.4 TypeDeductions o 34

3.1.4 The main() Function L 34
3.14.1 ReadingInputs.o o 34

3.1.4.2 Masking and Unmasking 35

3.1.4.3 TheSwitch 35

3.1.4.4 Writing Outputs oo 35

3.2 Application Programming oL L oL 36
3.2.1 Application Programming Lo 36
3.2.1.1 Application as C++ Program 36

3212 A Template File 36

The Pandore Handbook

CONTENTS 4

4 Preprocessor 37
4.1 Preprocessing of operators Lo 37
4.1.1 Generic Program Template File 38

4.1.2 The #+#tbegin Macro 39

4.1.2.1 Parameters of the ##begin Macro 39

4.1.2.2 The ##append Macro, 41

4.1.2.3 The ##forall Macro o 42

4.1.3 The ##main Macro o v v v e 42

4.1.4 Example e e 42

The Pandore Handbook

1 Introduction 1

1 Introduction

1.1 Programming Language

The Pandore programming environment is based on the object-oriented programming language
C++ and thus takes benefit from its modelling capability, its portability, its large audience and
the efficiency of its code.

The image processing concepts are represented as a C+-+ classes with attributes and member
functions. All of these classes are stored within a specific namespace called pandore. Therefore,
any Pandore files must includes the Pandore header file and uses the related namespace:

#include <pandore.h>
using namespace pandore;

1.2 Data Types
The Pandore programming environment uses all C++ concepts and first of all the primitive base
types such as char, short, long, float, double, unsigned char, unsigned short or unsigned long.

However, Pandore redefines those primitive base types in order to increase the portability. Each
base type is redefined so as to always keep the same size whatever the machine word size is. They
are renamed by reusing the name of the C type except that the first letter is uppercase and a U
is added to unsigned type. For example, long int is redefined as Long and is exactly 32 bits and
Ulong redefines the unsigned long int.

One supplementary type Errc is defined to encompass all the previous primitive base types. It
means that a variable of this type can be set with any of the base type value. Such type is generally
used as the return value of the operator function.

=> See Primitive Base Types(p.2).

1.3 Object Types

All the image processing concepts are defined in the Pandore environment either as a basic object
or as a compound object. They are all represented by C++ classes.

The basic objects are:

e Dimensions (Dimensionld, Dimension2d, Dimension3d);
e Points (Pointld, Point2d, Point3d);
e Images (Imx1d, Imx2d, Imx3d, Imc2d, Ime3d, Imgld, Img2d, Img3d);

e Region maps (Regld, Reg2d, Reg3d).
The compound objects are:

e Collections (Collection);

e Graphs (Graph2d, Graph3d)

=> See The Pandore objects(p. 3).

The Pandore Handbook

1.4 Image Processing Operators 2

1.4 Image Processing Operators

An image processing operator is defined as a traditional C+-+ function with formal parameters
and not as a member function of the related object, in order to avoid to redefine the Pandore class
each time a new operator is added.

A Pandore operator looks like the following template example:

Errc operator(const Img2duc &ims, Img2duc &imd, Long parl, Float par2) {
<content>
return SUCCESS;

}

The encoding takes advantage of some programming paradigms implemented as idioms. Basically:
e Images and region maps are considered as traditional arrays (1D vector, 2D matrix, 3D
volume);
e Access to pixel neighbours uses predefined arrays (see Accessing Image Pixel(p. 15));

e The main() function is standardized (see Operator Programming(p. 30)).

Moreover, there exist some facilities to write generic operators by the way of a preprocessor (See
Preprocessing of operators(p. 37)).

1.5 Image Processing Applications

An image processing application is a chain of operators. The C++ file is built by including all
necessary operators using #include and by developing one or several functions which link operators
in order to yield new Pandore objects by successive transformations of the input Pandore objects.
In such a chain, output objects of the former operators are input objects of the latter.

=> See Application Programming(p. 36)

2 Types

2.1 Primitive Base Types
2.1.1 Primitive Types

Of course, Pandore uses all the C++ primitive base types (char, unsigned char, int, long, long
long, long double ...). Nevertheless, some of these types had been redefined so as to be independent
from the host platform and to produce portable code.

These types redefine the related C types so as to keep always the same size whatever is the machine
word size. There are renamed by reusing the name of the C type except that the first letter is
uppercase and a U is added to unsigned type.

The primitive types are:
e Char (or int1): a tiny integer (8 bits) [-128,127].
e Uchar(or uint1): a tiny unsigned integer (8 bits) [0,+255].

e Short (or int2): a short integer (16 bits) [-32768,+32767].

The Pandore Handbook

2.2 The Pandore objects 3

Ushort (or uint2): a short unsigned integer (16 bits) [0,+65635].

Long (or int4): a long integer (32 bits) [-2147483648,+2147483647].

e Ulong (or uint4): a long unsigned integer (32 bits) [0,+4294967295].

Float (or float4): a real (32 bits) [-3.406+38 +3.40e 138] with a precision of 1.17e738

Double (or float8): a long real (64 bits) [—1.796+308 +1.79e 7308 | with a precision of
-308
2.22¢ .

Warning:

e The types Int or Uint do not exist.

e Since these types are redefined so as to be independent from the host architecture, Long
is not necessarily equivalent to the corresponding C++ long.

2.1.2 The Errc type

The type Errc allows the representation of any value of the predefined types, plus a new enu-
merated type: {SUCCESS, FAILURE}. This type is generally used as the return type for the
operator function.

A variable of this type can be set with any value of the primitive type and can be changed at any
time. For example:

Errc Operator() {

if (...) return (Char)O;
if (...) return 50.0F
return SUCCESS;

}

void main() {
Errc a;
a=Operator () ;

if (a==SUCCESS) ...
else if (a>50.0F) ...;

2.2 The Pandore objects
2.2.1 The Basis Class Pobject
All the Pandore objects inherit from the basis class Pobject. A Pandore object is an object that

can be loaded from a file and saved in a file. Pandore distinguishes six objects divided in four
basic objects and two compound objects.

2.2.2 The Basic Objects
There exists only 4 types of basic Pandore objects:

1. The point (Pointld, Point2d, Point3d) represents a location in coordinate space specified
in Long precision;

2. The dimension (Dimensionld, Dimension2d, Dimension3d) encapsulates size measures spec-
ified in Long precision;

The Pandore Handbook

2.2 The Pandore objects 4

3. The image (Imx1d, Imgld, Imx2d, Img2d, Imc2d, Imx3d, Img3d, Imc3d) is an array of
pixels;

4. The region map (Regld, Reg2d, Reg3d) is an array of labels.

2.2.3 The Compound Objects

The compound objects are composition of several base types or basic Pandore objects or even
compound Pandore objects. There exists 2 types of compound objects:

1. The collection (Collection) is a map of any base type or Pandore object referenced by a
name;

2. The graph (Graph2d, Graph3d) is a graph of indexes, where an index refers to an element
in an array. Any array is available which allows to create a graph of anything: a graph of
points (index refers to element in an array of points), a graph of region maps (an array of
region maps)7 a graph of integer, etc.

2.2.4 The Pandore Object Types

Each Pandore object is identified by a magic number and a name. The file panfile.h contains
the enumerated list Typobj of all the magic numbers. Each item in the enumerated list is built
with the name of the class and the prefix Po_. For instance Po_Img2duc is set with the magic
number of the object Img2duc (a 2D gray levels image of bytes) or Po_Point2d corresponds to a
Point2d.

The magic number and the name are accessible from the member function:

e String Name(): returns the name of the object (eg. Img2duc, Point2d);

e Typobj Type(): returns the magic number of the object (eg. Po_Img2duc, Po_Point2d).
For example:

Pobject *p = new Img2duc(122,256);
if (p->Type() == Po_Img2duc)
std::cout << p->Name() << std::endl;

2.2.5 The Pandore Object Attributes

Each object is defined by its own list of attributes. For example, the class Imc2duc is defined by
the dimension of the array and the color space or the class Reg2d is defined by the dimension and
the higher label value. However, there exists a structure named PobjectProps which gathers
all the attributes that are exchangeable between objects, such as the dimension, the number of
bands, the color space, the higher label value for region maps, etc. This structure can be used to
create an object with the properties of an another object.

For example, to build a region map with the same size than a given image, use:

Img2duc ims1(40,125);
Reg2d rgs(imsl.Props());

For example, to build a graph from a region map dimension and then an image from the resulted
graph dimension use:

The Pandore Handbook

2.3 The Dimensions 5

Reg2d rgs(120,256);

Graph2d *g=new Graph2d(rgs.Props());
Imc2duc ims2;

ims2.New(g.Props());

2.2.6 The Pandore Object member functions

A Pandore object has 4 categories of member functions:

1. Construction of the internal representation;
2. Data consultation;

3. File transfer;
4

. Miscellaneous functions.

2.2.7 The Pandore Object Files

A Pandore object can be saved in or loaded from a normalized file (suffixed by ".pan" by pure
convention). The file are composed of a common heading followed by an object specific heading
and then the data.

Note:

Even if the files are binary files, loading is independent from the platform architecture. A
Pandore object saved in MSB (Most Significant Bit first) platform can be loaded on LSB
(Most Significant Bit first) platform and vice versa.

2.3 The Dimensions
2.3.1 Definition

A dimension encapsulates size measures specified in Long precision.

Dimension3d

+d: Long
+h: Long
+w: Long

Figure 1: The class Dimension3d.

2.3.2 Types

There are three different classes of Dimension according to the dimension:

e Dimensionld: dimension in 1D;
e Dimension2d: dimension in 2D;

e Dimension3d: dimension in 3D.

The Pandore Handbook

2.3 The Dimensions 6

2.3.3 Public Attributes
Dimensions are characterized by size measures:

e Long w: the length (for 1D, 2D and 3D dimensions);
e Long h: the height (for 2D and 3D dimensions);
e Long d: the depth (for 3D dimension).

They are read write attributes. It means that they are accessible directly without any member
function. For example:

Dimension2d d;
d.w=12; d.h=20;
std::cout << d.h << std::endl;

2.3.4 Construction

A dimension can be created without any argument or with specified sizes, or a specified dimension.
For example:

Dimension2d d1; // = Dimension2d d1(0,0)

dl.w=12; d1.h=21;

Dimension2d d2(10,24); // w=24; h=10.

Dimension2d *d3=new Dimension2d(d2); // Same size measures than d2.

2.3.5 Consultation

The basic arithmetic operators (+,-,%,/,==, |=, +=, -=, *=, /=) between dimension and constant
or between dimensions has been redefined to handle dimensions. For example:

Dimension d1(12,13), *d2;
d2 = new Dimension(10,10);
if (d1==+d2) d1=(*d2)*5;
d2x=2;

2.3.6 File Transfer
To save a dimension in a file, just use:

Dimension d;
d.SaveFile("foobar.pan");

To load a dimension from a file, just use:

Dimension d;
d.LoadFile("foobar.pan");

Generally, a dimension is not saved directly in a file but by the means of a collection. To save and
load a dimension in a collection, use:

Collection cold;

Dimension2d *dl=new Dimension2d(10,20),*d2;
cold.SETPOBJECT ("bar" ,Dimension2d,d1) ;
d2=(Dimension2d*)cold.GETPOBJECT("bar" ,Dimension2d) ;

The Pandore Handbook

2.4 The Points 7

To save and load an array of dimensions in a collection, use:

Dimension2d #**d3=new Dimension2d*[12], **d4;

for (int i=0; i<12; i++) d3[i]l=new Dimension2d(i,i);
cold.SETPARRAY ("foo" ,Dimension2d,p3,12);
d4=(Dimension2d#**)cols.GETPARRAY("foo" ,Dimension2d) ;

std::cout << "Dimensions: " << d4[11]->w << "," << d4[11]->h << std::endl;

2.4 The Points
2.4.1 Definition

A point represents a location in a given coordinate space specified in Long precision.

Point3d
+2z: Long
+vy: Long
+ x: Long

Figure 2: The class Point3d.

2.4.2 Types

There are three different classes of Point according to the dimension:

e Pointld : point in 1D;
e Point2d : point in 2D;

e Point3d : point in 3D.

2.4.3 Public Attributes
Points are characterized by the coordinates:

e Long x: the abscissa (for 1D, 2D and 3D);
e Long y: the ordinate (for 2D and 3D);
e Long z: the depth (for 3D).

They are read write attributes. It means that they are accessible directly without any member
function. For example:

Point2d p;
p.x=5; p.y=12;
std::cout << p.y << std::endl;

The Pandore Handbook

2.4 The Points 8

2.4.4 Construction

A point can be created without any argument or with specified coordinates or a specified point,
or a specified dimension. For example:

Point2d pi; // = Point2d p1(0,0)

pi=i; // pl.x = pl.y =1

Point2d p2(12,24);

Dimension d(50,100);

Point2d p3(d); // =Point(50,100)

Point2d *p4 = new Point2d(3); // p4->x = p4->y = 3;

2.4.5 Consultation

The basic arithmetic operators (+,-,x,/,==, =, +=, -=, *=, /=) between point and constant or
between points has been redefined to handle point. For example:

Point2d p1(5,10), p2;
if (p1==p2 || p1==1) {
pl+=p2; p2+=2+pl;

pl*=p2; p2*=2;
}

2.4.6 File Transfer
To save a point in a file, just use:

Point p;
p.SaveFile("foobar.pan");

To load a point from a file, just use:

Point p;
p.LoadFile("foobar.pan");

Generally, a point is not saved directly in a file but by the way of a collection. To save and load
a point in a collection, use:

Collection cold;

Point2d *pl=new Point2d(10,20),*p2;
cold.SETPOBJECT ("bar",Point2d,pl);

p2= (Point2d*)cold.GETPOBJECT ("bar",Point2d) ;

To save and load an array of points in a collection, use:

Point2d **p3=new Point2d*[12], #**p4;

for (int i=0; i<12; i++) p3[il=new Point2d(i,i);

cold.SETPARRAY ("foo",Point2d,p3,12);
p4=(Point2d**)cols.GETPARRAY ("foo" ,Point2d);

std::cout << "Coordinates: " << p4[11]->x << "," << p4[11]->y << std::endl;

The Pandore Handbook

2.5 The Images

2.5 The Images

2.5.1 Definition

An image is considered as an array of pixels. A pixel stores a value or a vector of values at specified
coordinates. The various types of image depend on the pixel type and the array dimension.

Imx2duc
+ Depth(): Long EUJJ .
+ Height(): Long & I=
+ Width(): Long + i
+ Bands(): Long data -

pixel

Figure 3: The class Imx2duc.

2.5.2 Types

There are 27 different types of images depending on the spectrum, the dimension and the pixel
type. The name of a class is built from the following template:

In+[g,c,x]+[1d,2d,3d]+[uc,sl,sf]
It results from the concatenation of the prefix Im and each properties of the image with the

following conventions:

1. the spectrum: [g,c,x]

e g: gray level (= monospectral image);
e c: color (= multispectral image with 3 bands);

e x: multispectral (= multispectral image with n bands, n>=1).

2. the dimension: [1d,2d,3d]

e 1D;
e 2D;
e 3D.
3. the type of pixel: [uc,slsf]
e uc: unsigned char (8 bits, values in [0, 256]);
e sl: signed long (32 bits, values in [-2147483648, 2147483647]);

o sf: float (32 bits, values in [1.175494351e™38 | 3.402823466e 738 | with a precision of
1.4e-45).

For example:

The Pandore Handbook

2.5 The Images 10

e Imx2duc: multispectral, 2D image of tiny integers;
e Img3dsf: gray level, 3D image of reals;

e Imc2dsl: color, 2D image of long signed integer.

Note:

These images can also be named using the C++ template notation:
e Imx2d<Uchar>: multispectral, 2D image of tiny integers;
e Img3d<Float>: gray level, 3D image of reals;
e Imc2d<Long>: color, 2D image of long signed integer.

2.5.3 Hierarchy

Concretely, there are only three types of image:

e Imx3duc or Imx3d<Uchar>;
e Imx3dsl or Imx3d<Long>;

e Imx3dsf or Imx3d<Float>.
It means that all the other types are just a rewriting of these actual types. For example:

e gray level images are Imx3d with only 1 band;
e color images are Imx3d with 3 bands;

e 2D images are Imx3d with only 1 plane.

The major interest is that hierarchy can be used to write generic operator function, Instead of
writing one function per Pandore type composition, only one template function had to be written.
Such a function looks like the following example:

template <typename T>
Errc function(Imx3d<T> &ims, Imx3d<T> &imd, Float p1l) {

return SUCCESS;
}

This unique function can then be called with any image type. For example:

Errc resultl, result2;
Img2duc ims1(256,256);
Img2duc ims2(256,256);
Img2dsf ims3(256,256) ;
Img2dsf ims4(256,256);

resultl=function(imsi,ims2,5.0F);
result2=function(ims3,ims4,4.0F);

The Pandore Handbook

2.5 The Images 11

2.5.3.1 Public Attributes Images are characterized by the dimension, the number of bands
and the color space. These attribute values are accessible by the way of member functions:

e Long Width(): returns the number of columns;

e Long Height (): returns the number of rows;

e Long Depth(): returns the number of planes;

e Dimension2d Size(): returns the size as a dimension;

e Long Bands(): returns the number of bands (eg. 3 for color image, 1 for gray level image);

e int VectorSize(): returns the size of the data vector for one band (ie. the number of
pixels per bands);

e PColorSpace ColorSpace([x]): returns (if x is omitted) or set (if x is given) the color
space of a color image among: {RGB, XYZ, LUV, LAB, HSL, AST, 111213, LCH, WRY,
RNGNBN, YCBCR, YCHICH2, YIQ, YUV}.

e PobjectProps Props(): returns a structure with the image attribute values.

2.5.4 Construction

An image can be created with or without the related data. If the dimension is not given with the
constructor, then the data is not allocated.

For example, the creation of a 2D gray level image of bytes:

Img2duc ims1(256,512); // Data: array 256 rows x 512 columns.
Img2duc ims2(ims1.Size()); // Data: array size = imsl array size.
Img2duc ims3(imsl.Props()); // Data: array size = imsl array size.
Img2duc ims4; // No data.

Img2duc *ims5=new Img2duc(256,512); // Data: array size 256x512.
Img2duc *ims6=new Img2duc; // No data.

For example, the creation of a 2D color image of Float:

Imc2dsf ims7(256,512); // 256 rows x 512 columns.

im7.ColorSpace (RGB) ; // Set the color space to RGB
Imc2dsf *ims8=new Imc2dsf(256,512);
im8->ColorSpace (YUV) ; // Set the color space to YUV

For example, the creation of a 3D multispectral image (5 bands) of Long:

Imx2dsl ims9(5,256,512); // 5 bands, 256 rows and 512 columns.
Imx2dsl ims10; // No data.

2.5.5 Allocation

If the image has been created without data, the member function New() creates the data array -if
data already exist they are first deleted. For example:

Img2duc imsl; imsl.New(256,512);
Img2duc *ims5; ims5->New(256,512);
Img2duc ims3; ims3.New(imsl.Size());

The Pandore Handbook

2.5 The Images 12

Warning:

The creation of the data does not initialize pixel values to 0. However, this can simply be
done using:

Img2duc ims(256,256) ;
ims=0;

2.5.6 Allocation from a predefined array

It is possible to allocate the data from a predefined vector. In this case, the destruction is not
done with the object. This assumes that the predefined vector have the correct size (eg., number
of bands * depth * height * width xsizeof(item) items); For example:

Float *d = (Float*)malloc(3*256%512*sizeof (Float));
Imx2dsf ims1(3,256,512,d);

Imx2dsf *ims2 = new Imx2dsf(3,256,512,d);
ims1.delete();

delete ims2;

free(d);

For example, to process a multispectral image as several gray level images, use:

Imc2duc *ims = new Imc2duc(256,256);

for (b=0;b<ims->Bands () ;b++) {
Img2duc *imii = new Img2duc(ims.Height(),ims.Width(),ims->Vector(b));
Img2duc *imio = new Img2duc(imii->Props());
gauss:PGaussianFiltering(*imii,*imio,2.0F);
*imii=*imio;
delete imii;
delete imio;

For example, to process a 3D multispectral image as several 2D grayscale images, use:

Imx3duc *ims= new Imx3duc(3,12,200,256);
for (b=0;b<ims->Bands () ;b++) {
for (d=0;d<ims->Depth() ;d++){

Img2duc *imii = new Img2duc(ims->Height(),ims->Width(),&(*ims) (b,d,0,0));
Img2duc *imio = new Img2duc(imii->Props());
gauss:PGaussianFiltering (*imii,*imio,2.0F) ;
*imii=*imio;
delete imii;
delete imio;

Warning:

Unfortunately, it is not possible to process directly a 3D multispectral image as several mul-
tispectral images since a 3D multipsctral image is not coded as several 2D multispectral 2D
images. It is necessary to copy the required pixel from the 3D image to the 2D images and
vice versa with the processed pixels.

2.5.7 Destruction

To delete the data without deleting the object itself, use the member function Delete(). For
example:

The Pandore Handbook

2.5 The Images 13

Img2duc ims3(512,512);
ims3.Delete();
ims3.New(512,245) ;

Img2duc *ims5=new Img2duc;
ims5->New(512,512);
ims5->Delete();

2.5.8 Consultation
Access to pixel value can be done in three ways:

1. As a multidimensional array:

e For gray level image only: ()
ims1(i,j)=15;
(*ims4) (i,j)=15;

Point2d pt(10,20);
ims1[pt]=15;

e For any image type: (band,)

Imx2duc ims8, *ims9;

ims8(b,i,j)=15; // b the band number.
(*ims9) (b,1,j)=15;

Point2d pt; ims8(b,pt)=15;

e For color image only: X(), Y(), Z()
ims6.X(i,j)=156; ims6.Y(i,j)=10; ims6.Z(i,j)=14;
ims7->X(i,j)=15; ims7->Y(i,j)=10; ims7->Z(i,j)=14;
Point2d pt;
ims6.X[pt]=15; ims6.Y[pt]=10; ims6.Z[pt]l=14;

2. As a unique vector:

e For any image: Vector() returns the beginning of the data vector.

Img2dsl ims(256,512);

for (Ulong *p=ims.Vector(); p<ims.Vector()+ims.VectorSize();)
*p++ = 15;

e For any image type: Vector(band) returns the beginning of the specified band vector.

Imx2dsl imx(ims.Size());
for (int b=0; b<imx.Bands(); b++) {
for (Long *ps=imx.Vector(b); ps<imx.Vector(b)+imx.VectorSize();)
*ps++= 127;

e For color image only: VectorX(), VectorY(), VectorZ() return the beginning of each
color bands.

Imc2dsl imc(ims.Size());
Long *q=imc.VectorX(); Long *r=imc.VectorY(); Long *t=imc.VectorZ();

for (int i=0; i< imc.VectorSize();i++)
*qQ++ = *kr++ = kgt = 127,

The Pandore Handbook

2.5 The Images 14

2.5.9 Setting Data Values

To copy the value of an image into an other image already allocated and with the same size, use
operator =. For example:

Img2duc ims1(256,512)
Img2duc *imdl = new Img2duc(256,512)
ims1=*imd1;

To set a constant to all the pixel values use operator =. For example:

Imx3duc ims(3,12,123,245);
ims=127; // Set 127 to all the pixel values

Warning:

The pixel are directly copied. If the type of the source pixel is different from the destination,
the values are casted using the C casting convention. For example:

Img2duc *imdl = new Img2duc(256,512)
*imdl = 127;

Img2duc imd2(256,512)

imd2 = 127.5; // Use 127

2.5.10 File Transfer
To save an image in a file, just use:

Img2duc img;
img.SaveFile("foobar.pan");

To load an image from a file, just use:

Img2duc img;
img.LoadFile("foobar.pan");

2.5.11 Miscellaneous

The member function Hold() tests whether a point is in or out of the image boundary. For
example:

Img2duc ims(100,200);
Point2d p(-1,-1);

ims.Hold(p); // returns false;
ims.Hold(5,10); // returns true;
ims.Hold(10,199); // returns true;
ims.Ho1ld (10,200); // returns false;

The member function Frame () sets the border of the image with a given value or with the pixel
of a given image. For example:

ims2.Frame(127,5); // set the border (5x5) with the value 127.
ims2.Frame(ims1,5,6); // set the border (5x6) with the pixel of the image imsl.

The Pandore Handbook

2.6 Accessing Image Pixel 15

2.6 Accessing Image Pixel

Image pixel access uses traditional C array element access. Pixel neighbour access uses predefined
arrays indexed by conventional Freeman encoding.

2.6.1 Accessing Image Pixel
The declaration of image dimension uses the following conventional order:

¢ (row, column) for 2D image.

e (depth, row, column) for 3D image;
Thus, access to a image pixel follows the same convention:

value=ims [row] [column]; for 2D image
value=ims [depth] [row] [column]; for 3D image

For example:

Img3duc imagel(64,128,256); // 64 slices, 128 rows and 256 columns
Img2duc *image2 = new Img2duc(128,256); // 128 rows and 256 columns
int z=12,y=11,x=10;

image1[z] [y] [x]=12;
(ximage2) [y] [x]1=12;

2.6.2 Accessing Neighbour Pixels

The Freeman encoding assigns a code (an integer) to each immediate neighbour of a pixel (or a
voxel in 3D). The encoding depends on the dimension (2D or 3D) and on the connexity (4 or 8
for 2D; 6 or 26 for 3D).

2.6.2.1 Freeman Encoding for 2D Image

Convention For 2D, the encoding is given as follows:

X a
i 7
Y, ggg Y gﬂg

4-connexity 8-connexity

Figure 4: The Freeman encoding for 2D for 4-connexity and 8-connexity.

This encoding guaranties two properties:

The Pandore Handbook

2.6 Accessing Image Pixel 16

1. Pixels v; for i in [0;1] in 4-connexity (resp. [0;3] in 8-connexity) are visited before the central
pixel and pixels v; for i in [2;3] (resp. [4;7]) are visited after.

2. In 4-connexity, pixel vi and pixel vo_ ; are symmetrical (resp. vj and vy 4iin 8-connexity).

Using Predefined Arrays Access to a specified neighbour is done by using predefined arrays.

The four arrays v4x| |, vdy[| and v8%[|, v8y[| indicate the x and y shifts to operate from the
central pixel to access a given neighbour in 4 and 8 connexity respectively:

int shiftx, shifty;
for (v=0;v<4;v++) { shiftx=vé4x[v]+x; shifty=v4yl[vl+y; } // In 4-connexity
for (v=0;v<8;v++) { shiftx=v8x[v]+x; shifty=v8y[vl+y; } // In 8-connexity

For example, to perform a mean filter (set the central pixel with the mean of its neighbours), use:

Long x,y;
for (int y=1;y<ims.Height()-1;y++)
for (int x=1;x<ims.Width()-1;x++) {
float sum=0.0F;
for (int v=0;v<8;v++)
sum+=ims [y+v8y [v]] [x+v8x[v]];
ims [y] [x]=sum/8;

The two arrays v4[| and v8[| give the shifts as a 2D point for 4 and 8 connexity respectively:

Point2d shiftp, p(10,10);
for (v=0;v<4;v++) { shiftp=v4[v]l+p; } // In 4-connexity.
for (v=0;v<8;v++) { shiftp=v8[vl+p; } // In 8-connexity.

For example, to perform a mean filter (set the central pixel with the mean of its neighbours), use:

Point2d p;
for (int p.y=1;p.y<ims.Height()-1;p.y++)
for (int p.x=1;p.x<ims.Width()-1;p.x++) {
float sum=0.0F;
for (int v=0;v<8;v++)
sum+=ims [p+v8[v]1];
ims [p]=sum/8;

2.6.2.2 Freeman Encoding for 3D Image

Convention For 3D, the encoding is given as follows:

The Pandore Handbook

2.6 Accessing Image Pixel 17

6-connexity

Figure 5: The Freeman encoding for 3D for 6-connexity and 26-connexity.

This encoding guaranties two properties:

1. Voxels v; for i in [0;2] in 6-connexity (resp. [0;12] in 26-connexity) are visited before the
central pixel and voxels v; for i in [3;5] (resp. [13;25]) are visited after.

2. In 6-connexity, voxel vi and voxel vg_, ; are symmetrical (resp. vj and vi3 4iin 26-connexity).

Using Predefined Arrays Access to a specified neighbours is done by using predefined arrays.

The six arrays v6x| |, v6y[|, v6z| | and v26x][|, v26y| |, v26z[| indicate the x, y and z shifts to
operate from the central pixel to access a given neighbour in 6 and 26 connexity respectively:

int shiftx, shifty, shiftz;
for (v=0;v<6;v++) { shiftx=v6x[v]+x; shifty=v6yl[vl+y; shiftz=v6z[v]+z }
for (v=0;v<26;v++) { shiftx=v26x[v]+x; shifty=v26y[v]+y; shiftz=v6z[v]+z }

For example, to perform a mean filter (set the central pixel with the mean of its neighbours), use:

Long x,y,z;
for (int z=1;z<ims.Depth()-1;z++)
for (int y=1;y<ims.Height()-1;y++)
for (int x=1;x<ims.Width()-1;x++) {
float sum=0.0F;
for (int v=0;v<26;v++)
sum+=ims [z+v26z [v]] [y+v26y [v]] [x+v26x [v]];
ims [z] [y] [x]=sum/26;

The two arrays v6[| and v26[| give the shifts as a 3D point for 6 and 26 connexity respectively:

Point3d shift,p(10,10,10);
for (v=0;v<6;v++) { shift=v6[v]+p; }
for (v=0;v<26;v++) { shift=v26[v]+p; }

For example, to perform a mean filter (set the central pixel with the mean of its neighbours), use:

The Pandore Handbook

2.7 The Region Maps 18

Point2d p;
for (int p.z=1; p.z<ims.Depth()-1; p.z++)
for (int p.y=1; p.y<ims.Height()-1; p.y++)
for (int p.x=1; p.x<ims.Width()-1; p.x++) {
float sum=0.0F;
for (int v=0;v<26;v++)
sum+=ims [p+v26[v]];
ims [p]=sum/26;

2.6.3 Generalized Access

Arrays prefixed by vc allow generalized access to a specified neighbour from a given connexity:

e as a Point: vc[connexity][code],

e as coordinates: vex|connexity][code], vey[connexity][code], vez[connexity][code].

For example:

Point2d shiftp,p(10,10); int conx=4;

int shiftx, shifty;

for (v=0;v<conx;v++) { shiftp=((Point2d*)vc[conx]) [vl+p; }

for (v=0;v<conx;v++) { shiftx=vcx[conx] [vl+p.x; shifty=vcylconx] [vl+p.y; }

2.7 The Region Maps
2.7.1 Definition

A region map is an image of labels. A region is defined by a set of connected labels with the same
value. Each pixel in a region map stores a label which is a Ulong value (long unsigned integer).
This means that a region map can store 4294967294 different regions.

Note:

By pure convention, label 0 is considered as a non region.

Concretely, a region map is represented by an Img2dul image (image with Ulong pixels). It implies
that all image member functions are applicable to a region map.

Reg2d
g label

+ Depth(): Long

+ Height(): Long 6’0\6 »
+ Width(): Long
+ Labels(): Long

Figure 6: The class Reg2d.

2.7.2 Types

There are 3 different types of region map according to the dimension:

The Pandore Handbook

2.7 The Region Maps 19

e Regld: region map in 1D;
e Reg2d: region map in 2D;

e Reg3d: region map in 3D.

2.7.3 Public Attributes

A region map is first of all a Ulong image plus an attribute that indicates the value of the higher
label. These attribute values are accessible by the way of member functions:

e Long Width(): returns the number of columns;

e Long Height (): returns the number of rows;

e Long Depth(): returns the number of planes;

e Dimension2d Size(): returns the size as dimension;

e int VectorSize(): returns the size of the data vector;

e Long Labels(): returns the higher label value;

e Long Labels(Long labelmax): sets the higher label value;

e PobjectProps Props(): returns a structure with the region attribute values.

2.7.4 Construction

A region map can be created with or without the related data. If the dimension is not given with
the constructor, then the data is not allocated. For example, creation of a 2D region map can be
done as follows:

Reg2d rgs1(256,512); // Data: 256 rows, 512 columns
Reg2d rgs2(rgsl.Size()); // Data: same size than rgsil
Reg2d rgs3; // No data

Reg2d *rgs4=new Reg2d; // No data

The creation of a region map from the properties of an other Pandore object can be done by using;:

Reg2d rgsi(ims2.Props()); // same size than imsl

2.7.5 Allocation

If the region map has been created without data, the member function New() creates the data
array -if data already exist they are first deleted. For example:

Reg2d rgs3; rgs3.New(256,512);
Reg2d *rgs4; rgs4->New(256,512);

Warning:
The creation of the data does not initialized pixel values to 0. However, this can simply be
done using:
Reg2d rgs(256,256);
rgs = 0; // This also sets Labels(0).
rgs = 127; // This also sets Labels(127).

The Pandore Handbook

2.7 The Region Maps 20

2.7.6 Allocation from a predefined array

It is possible to allocate the data from a predefined vector:

Ulong *d = (Ulong*)malloc(128*256*sizeof (Ulong));
Reg2d rgs1(256,128,d);

Reg2 *rgs2 = new Reg2(256,128,d);

rgsl.delete();

delete rgs2;

free(d);

Warning:
In this case, the destruction is not done with the object.

For example, to process a 3D region map as several 2D region maps:

Reg3d *rgs= new Reg3d(12,200,256);

for (d=0;d<rgs->Depth() ;d++) {

Reg2d *regii=new Reg2d(rgs->Height(),rgs->Width(),&(*rgs)(d,0,0));
Reg2d *regio = new Reg2d(regii->Props());

gauss:Gauss (xregii,*regio,2.0F);

*regii=*regio;

delete regii;

delete regio;

2.7.7 Destruction

To delete the data of a region map without deleting the region map itself, use the member function
Delete (). For example:

Reg2d rgs1(120,245);
rgsl.Delete();

Reg2d rgs4 = new Reg2d(120,245);
rgs4->Delete();
rgs4->New(400,200) ;

2.7.8 Consultation

Access to label value can be done in three ways:

1. As a multidimensional array (depth,row,column):

rgsi(i,j)=15;
(*rgs4) (i,j)=15;
Point2d pt(10,20);
rgs1[pt]=15;

2. As a unique vector: Vector()

Reg2d rgs(256,512);
for (Ulong *p=rgs.Vector(); #*p< rgs.Vector()+rgs.VectorSize();)
*p++ = 15;

3. As a separate multidimensional array: X()

Reg2d regi1(10,20);
Reg3d reg2(123,124,120);
ULong **d=regl.X();
Ulong ***dl=reg2.X();

The Pandore Handbook

2.8 The Graphs 21

2.7.9 File Transfer
To save a region map in a file, just use:

Reg2d reg;
reg.SaveFile("foobar.pan") ;

To load an region map from a file, just use:

Reg2d reg;
reg.LoadFile("foobar.pan");

2.7.10 Miscellaneous

The member function Hold () tests whether a point is in or out of the region map boundary. For
example:

Reg2d rgs(100,200) ;
Point2d p(-1,-1);

rgs.Hold(p) ; // returns false;
rgs.Hold(5,10); // returns true;
rgs.Hold(10,199) ; // returns true;
rgs.Hold(10,200) ; // returns false;

The member function Frame () sets the border of the region with a given value or with the pixel
of a given region. For example:

rgs2.Frame(127,5) ; // set the border (5x5) with the value 127.
rgs2.Frame(rgs1,5,6); // set the border (5x6) with the pixel of the region rgsl.

2.8 The Graphs
2.8.1 Definition

A graph object allows the representation of the neighbourhood relation between elements located
in the spatial domain. A graph is composed of nodes linked to other nodes by edges.

The two types of graph are supported: directed and undirected graphs. With undirected graph,
edges are symmetrical and with directed graph edges are non symmetrical.

The graph is disconnected from the array of objects it organizes. An index in each node is the
mean to reference an object in a separate array, as a pointer, but without using a specified type.
This principle allows the definition of any type of graph (with the same graph type): a graph of
points, a graph of region maps, a graph of images, etc. This implies to define at the same time the
graph and the array of objects. For example, to define a graph of region maps, one has to define a
graph and an array of region maps. In the same way, edges can be described by an external array
which lists properties for each edges.

2.8.1.1 Node A node (type GNode) is characterized by:

e a value (Double) —that can be a weight for example—,

e its spatial coordinates (Point2d or Point3d)

The Pandore Handbook

2.8 The Graphs 22

e an index that references an element in an external array of elements (Long).

Each node 1 is characterized by an integer —accessible by g[i]->Item()—which indexes an element
in the array of elements. For example, suppose the structure of elements tab that contains at least
the field size and a graph grs:

struct element tab[50]; // An array of 50 elements (Long).
id=grs[i]l->Item(); // id is the index in the array of objects.
tab[id] .size=120; // Sets the size of the object to 120 pixels.

2.8.1.2 Edge An edge (type GEdge) is characterized by its weight which is a Double value and
an index to an external array that can describe the properties of the edge. Several edges can be
created between two nodes. Each edge is identified by an index with can be used to reference an
external array that decribes the edge properties.

1 2 3 4 5 6 7 8 9 10

0
Graph2d
Bl B J

™S GEdge | p GEdge |p GEdge

Figure 7: Representation of a graph with 11 nodes. The node #1 represents the element #2 of
the array #1. The node #0 has the neighbour nodes 3, 4 and 6. The edge #1 is described by the
element #1 of the array #2.

Graph2d GNode GEdge
. data i
+ Depth(): Long + value: Double L @djacent .
+ Height(): Long + seed: Point2d e,
+ Width(): Long + item :Long it 9 L
+ Size(): Long item. Long

Figure 8: The class diagram for Graph2d.

2.8.2 Types

There are 2 different types of graph according to the dimension:

The Pandore Handbook

2.8 The Graphs 23

e Graph2d: graph in 2D

e Graph3d: graph in 3D.

2.8.3 Public Attributes

A graph is characterized by the array of nodes and a spatial domain. This implies that the number
of nodes must be known before the creation of a graph.

2.8.3.1 Public Attributes of graph Attribute values of graph are accessible by the way of:

e bool isDirected(): returns true if the graph is directed, false otherwise.
e Long Size(): returns the number of nodes;

e Long Width(): returns the number of columns of the related space;

e Long Height (): returns the number of rows of the related space;

e Long Depth(): returns the number of planes of the related space;

e Dimension ImageSize(): returns the dimension of the related space;

e PobjectProps Props(): returns a structure with the graph attribute values.

2.8.3.2 Public Attributes of nodes Attribute values of node are accessible by the way of:

e Double value: stores the value of the node;

e Long Item([int x]): returns (if x is omitted) or sets (if x is given) the index of the element
in the array of elements;

e Point2d seed: stores the coordinates of the node;

e GEdgex Neighbours(): returns the list of neighbour nodes.

2.8.3.3 Public Attributes of edges Attribute values of an edge between two nodes is ac-
cessible by the way of:

e Long Node(): returns the node number of the neighbour;

e Long Item([int x]): returns (if x is omitted) or sets (if x is given) the index of the element
in the array of elements;

e Double weight: stores the weight;

e GEdgex Next ([GEdgex x]): returns (if x is omitted) or sets (if x is given) the next neighbour.

The Pandore Handbook

2.8 The Graphs 24

2.8.4 Construction
To create a new graph use the followings constructors.

Graph2d(bool directed =false);

Graph2d(Long s, bool directed =false);

Graph2d(Long s, Long h, Long w, bool directed =false);
Graph2d(Long s, const Dimension2d &d, bool directed =false);
Graph2d(const PobjectProps &p);

Graph3d(bool directed =false);

Graph3d(Long s, bool directed =false);

Graph3d(Long s, Long d, Long h, Long w, bool directed =false);
Graph3d(Long s, const Dimension3d &d, bool directed =false);
Graph3d(const PobjectProps &p);

For example, to create a new directed graph with or without related data, use:

Graph2d g(100,256,512,false); // Data: 100 nodes; Space: 256 rows x 512 columns.
Graph2d g; // No data, no space.

Graph2d *g=new Graph2d(200); // Data: 200 nodes; no space.

Graph3d g(10,10,25,12,false); // Data: 10 nodes; Space 10 planesx25 rowsx12 columns
Graph3d g; // No data; No Space, and undirected.

For example to create a new directed graph with or without related data, use:

Graph2d g(100,256,512,true); // Data: 100 nodes; Space: 256 rows x 512 columns.
Graph2d g(truel; // No data, no space.

Graph2d *g=new Graph2d(200,true); // Data: 200 nodes; no space.

Graph3d g(10,10,25,12,true); // Data: 10 nodes; Space 10 planesx25 rowsx12 columns
Graph3d g(true); // No data; No Space, and undirected.

To create a graph from the properties of another Pandore object, use:
Graph2d s1(obj2.Props());

Note:

If obj2 is a graph then the number of nodes of gs1 is equal to the number of node obj2. If
obj2 is a region map then the number of nodes of graph gs1 is equal to the higher value of
labels +1. If obj2 is an image then the number of nodes of graph gs1 is equal to the number
of pixels.

2.8.5 Initialisation

If a graph has been created without data, the member function New() allocates the data. If the
data already exist they are deleted before the reallocation. For example:

g.New(100,256,128) ;
Graph2d *gsl; gs1->New(100,256,128);

To create a new graph from a region map use the member function Init (Reg2d &rgs). Seeds are
set to the coordinates of the upper left point of the region (not the centre of mass). For example:

Reg2d rgs(100,100);
Graph2d grs(false);
grs.Init(rgs);

The Pandore Handbook

2.8 The Graphs 25

To create a new graph from a region map rgs and a seed map seed -seeds are given as punc-
tual regions in a region map- use the member function Init(const Reg2d &rgs, const Reg2d
&seed). For example:

Reg2d rgsi;
Reg2d seed;
grs.Init(rgsl,seed);

To create a graph from an another graph use operator =. For example:

Graph2d gsi1(grs2->Props());
gsl = grs2;

2.8.6 Destruction

To delete graph’s data without deleting the graph itself use member function Delete(). For
example:

Graph2 gs1(12,256,256);
gsl.Delete();
gs1.New(120,256,256) ;
gs2->Delete();

2.8.7 Adding nodes

To add node s in the graph that indexes the element i at coordinates (y,x), use the member function
Add (). For example, to add the node 5 that indexes the element 6 at the 3D coordinates z=50,
y=12, x=10:

grs.Add(5,6,Point3d(50,12,10));

The shorter instruction

grs.Add(5,6);

do not consider the coordinate.

To get the index of the element represented by node s1 use the member function Item(). For
example:

Long nbreg = gli]l->Item();

Warning:

Node g[i] does not always exit, for instance when a node has been deleted with the member
function Del (). So it is necessary to check first the existence of the node before using it:

if ((g[il!=NULL))
..o.ooglil-> ...

2.8.8 Deleting nodes
To delete the node s from the graph, use the member function Del(). For example:

grs.Del(10); // delete node 10.

The Pandore Handbook

2.8 The Graphs 26

2.8.9 Linking nodes

To add node s1 in the list of neighbours of the node s2 use the member function 1ink(). An
edge is created between s1 and s2, and if the graph is undirected the symmetrical edge between
s2 and s1 is also added. If the edge already exists the weight is updated either by setting a new
value if parameter add=false or by adding the new value to the current value if add=true. By
default, the weight value is 1.0.

For example, to create an edge between nodes 10 and 12 with weight=1.0:

grs.Link(10,12);

For example, to add the value 5.0 to the current value of the weight:

grs.Link(10,12,5.0,true) ;

To create several edges between two nodes; it is necessary to identify each edge with an integer.
This integer can next be used to reference an external array that described the edge properties.
For example, the following code snippet defines an array with a color for each edge. The edge
between the node 10 and 12 is created and indexed with the 20th and the 22th colors.

Color[100] colors;
grs.Link(10,12,20);
grs.Link(10,12,22);

To get the list of neighbours of a node use the member function Neighbours (). For example:

GEdge* 1 = gl[i]l->Neighbours();

1=1->Next();

for (GEdge* 1 = glil->Neighbours(); 1!=NULL; 1=1->Next())
Long node = ptr->Node();

2.8.10 Unlinking nodes

To delete node s1 from the list of neighbours of node s2 use the member function Unlink(Long
s1,Long s2). If the graph is undirected the symmetrical edge is also deleted. For example:

grs.Unlink(10,12);

If several edge are used between nodes, use the edge index to delete a specified edge. For example,
to delete the edge indexed by 2:

grs.Unlink(10,12,2);

2.8.11 File Transfer

To save a graph in a file, just use:

Graph2d grs;
grs.SaveFile("foobar.pan") ;

To load a graph from a file, just use:

Graph2d grs;
grs.LoadFile("foobar.pan") ;

The Pandore Handbook

2.9 The Collection 27

2.8.12 Miscellaneous

The member function Merge () merges 2 nodes (n1 and n2) into 1 node. Is also merges the list of
neighbours. The node n1 is kept and the node n2 is deleted. The list of edges of node n2 is added
to the list of edges of node n1. The weight of the common edges are added. For example:

Graph2d grs;

Reg2d rgs(120,102);

grs.Init(rgs);

Reg2d: :ValueType r1=10,r2=12;
gd.Merge(rl,r2); // Merges regions rl and r2.

The member function Split () splits one node into two nodes. The new node is a copy of the old
node. Both nodes have the same attribute values and the same list of neighbours. For example:

Graph2d grs;

Reg2d rgs(120,102);

grs.Init(rgs);

Reg2d: :ValueType r1=10,r2=120;

gd.Split(rl,r2); // Split region rl in rl and r2.

2.9 The Collection
2.9.1 Definition

A Collection is a bundle of heterogeneous data (a la struct C). Each data in a collection is indexed
by a name. Available types of data are:

primitive C types (Uchar, Char, Short, Long, Uchar ... - except int);

arrays of primitive C types;

Pandore objects (even collection);

arrays of Pandore objects.

Collection name1: value
data
name2: |

value
—— [[][]

Figure 9: The class Collection.

2.9.2 Types

There exists only 1 type of Collection:

e Collection: a collection of anything.

The Pandore Handbook

2.9 The Collection 28

2.9.3 Construction
To declare a collection, just use:

Collection ci;

or

Collection *c2= new Collection;

To copy a specified collection in an other collection, use:

Collection *cl, *c2;

’;(;i=*c2;

or

Collection *c2;

é;ilection *c3=c2->Clone();

2.9.4 Destruction

To delete the data of a collection without deleting the collection itself, just use:

cl.Delete();

2.9.5 Consultation

The easiest way to set a data in a collection is to use the following macros:

e SETVALUE(name, type, value) (type is from Pandore basic types: Uchar,
Slong, Ulong, Float... - int is not allowed);

e SETARRAY(name, type, pointer_to_array, number_of_items) (type is from
Pandore basic types: Uchar, Slong, Ulong, Float... - int is not allowed);

e SETPOBJECT(name, type, pointer_to_object);

e SETPARRAY(name, type, pointer_to_object, number_of_items).
The easiest way to get a data from a collection is to use the following macros:

e GETVALUE(name, type);
e GETARRAY(name, type) + GETARRAYSIZE(name, type);
e GETPOBJECT(name, type);

e GETPARRAY(name, type) + GETPARRAYSIZE(name, type).

Examples:

The Pandore Handbook

2.9 The Collection 29

1. Set and get a primitive value named "foo" in the collection:

Collection col;

Float f=1.2;
col.SETVALUE("foo" ,Float,f);
f=col.GETVALUE("foo",Float);

2. Set and get an array of primitive values named "bar" in the collection:

Collection col;

Ushort *t1 = new Ushort[15]; *t2;
col.SETARRAY("bar" ,Ushort,t1,15);

int x=col.GETARRAYSIZE("bar",Ushort);
t2=col.GETARRAY ("bar" ,Ushort) ;

3. Set and get a Pandore object (Imc3duc) named "foo" in the collection:

Collection col;

Imc3duc *iml=new Imc3duc(25,45,260), *im2;
col.SETPOBJECT("foo",Imc3duc, iml)
im2=col.GETPOBJECT ("foo",Imc3duc)

4. Set and get an array of Pandore objects (Point2d) named "bar" in the collection:

Collection col;

Point2d **pl, **p2;

pl=new Point2d*[12];

for (int i=0; i<12; i++) pl[il=new Point2d(i,i);
col.SETPARRAY ("bar",Point2d,pl,12);
p2=(Point2d**)col.GETPARRAY ("bar" ,Point2d) ;

Warning:

SETARRAY, SETPOBJECT and SETPARRAY do not make a copy of the data, it is just a reference
to the object. Consequently, the following example generates an error because pl is a local
array that is deleted at the end of the function Bar.

Errc Bar(Collection &cold) {
Point2d p1[12];
cold.SETPARRAY ("foo",Point2d,pl1,12);

Remarks:

In case of SETXXXX, if the name already exists then the related data is replaced without
destruction.

Note:

In the special case of a variable number of data with a same name, the convention is to use
several arrays prefixed with the name: name.0, name.1, name.2... For example, the red, green
and blue for 10 pixels can be represented by three arrays: t.1, t.2, t.3 with 10 items each.
The member function NbOf () returns the number of components and GETNARRAYS () returns
the list of arrays. For example:

Collection col;

Long minsize, size;

std::string type;

col.NbOf ("foo",type,size,minsize);

The Pandore Handbook

3 Programming 30

if (type == "Array:Char") {
Char **foo=cold.GETNARRAYS("foo",Char,size,minsize)
for (int i=0; i<size; i++) {
Char* foo_i=fool[i];
for (c=0; c<minsize; c++) {
< ... using foo_il[c] ... >

}

2.9.6 File Transfer
To save a collection, just use:

Collection col;
col.SaveFile("foobar.pan");

To load a collection, just use:

Collection col;
col2.LoadFile("foobar.pan");

3 Programming

3.1 Operator Programming
3.1.1 Atomic Operator

Operator differs from application in what it is atomic. The concept of atomicity does not refer to
the grain-size of the operator but to the fact that the control inside the operator must be solved.
An operator is not atomic when:

e Some parts of the operator can be exchanged by another;
e Some parts of the operator can be controlled individually;

e Some parts of the operator need a special skill to control it.

In such cases, the operator should must be split into several atomic operators.
The goal of such a principle is threefold:
e It reduces the number of parameters to be tuned. The less is the number of parameters the
less is difficult to use it;

e It reduces the operational knowledge required to select the operator, to tune its parameter
and to control its execution;

e It reduces the number of needed operators in the library when some combining operators
exist.

The Pandore Handbook

3.1 Operator Programming

3.1.2 Operator Template File

The following template gives the general structure of an operator file.

~
*

-*x- mode: c++; c-basic-offset: 3 -*-

Copyright (c) 2013, GREYC.
A1l rights reserved

You may use this file under the terms of the BSD license as follows:

"Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

* Neither the name of the GREYC, nor the name of its
contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."

For more information, refer to:
https://clouard.users.greyc.fr/Pandore/

* Ok ¥ X X K K K K K K K X X X X ¥ X ¥ X K K K K K K K X ¥ ¥ ¥ ¥ ¥ *

*
~

#include <pandore.h>
using namespace pandore;

Errc Operator(const Img2duc &ims, Img2duc &imd, Short p) {
// Body
return SUCCESS;

}

Errc Operator(const Img2dsl &ims, Img2dsl &imd, Short parameter) {
// Body
return SUCCESS;

}

#ifdef MAIN

/%
* Modify only the following constants, and the operator switches.
*/

#define USAGE "usage: ’%s parameter [-m mask] [im_in|-] [im_out]|-]"

#define PARC 1 // Number of parameters

#define FINC 1 // Number of input images

#define FOUTC 1 // Number of output images

#define MASK 0 // Level of masking

int main(int argc, char *argv[]) {
Errc result; // The result code of the execution.

The Pandore Handbook

3.1 Operator Programming 32

Pobject* mask; // The mask.

Pobject* objin[FINC + 1]; // The input objects.

Pobject* objs[FINC + 1]; // The source objects masked by the mask.
Pobject* objout[FOUTC + 1]; // The output objects.

Pobject* objd[FOUTC + 11; // The result objects of the execution.
char* parv[PARC + 1]; // The input parameters.

ReadArgs(argc, argv, PARC, FINC, FOUTC, &mask, objin, objs, objout, objd, parv, USAGE, MASK);

switch(objs[0]1->Type O){

case Po_Img2duc: {
Img2duc* const ims = (Img2duc*)objs[0];
objd[0] = new Img2duc(ims->Props());
Img2duc* const imd = (Img2duc*)objd[0];

result = Operator (*ims, *imd, atoi(parv([0]));
break;

}

case Po_Img2dsl: {
Img2dsl* const ims = (Img2dsl*)objs[0];
objd[0] = new Img2dsl(ims->Props());
Img2dsl* const imd = (Img2dsl*)objd[0];

result = Operator(*ims, *imd, atoi(parv[0]));

break;

}

default:
PrintErrorFormat (objin, FINC);
result = FAILURE;

}

if (result) {
WriteArgs(argc, argv, PARC, FINC, FOUTC, &mask, objin, objs, objout, objd, MASK);
}

Exit(result);
return 0O;

}
#endif

3.1.3 The operator() Function

Inputs and outputs are Pandore objects. To a first approximation, it is necessary to define one
function per available object composition. For example, from the previous example, a function is
defined for Img2duc x Img2duc and one for Img2dsl x Img2dsl.

However, it is possible to write only one function when the algorithm is the same for each type.
There are two different ways to write generic functions:

1. The first one uses the hierarchy of the objects -see below Writing Generic Operator
Function Using Hierarchy(p. 32).

2. The second one uses the preprocessor -For more details see Preprocessing of opera-
tors(p. 37).

3.1.3.1 Writing Generic Operator Function Using Hierarchy For instance, all images
and region maps inherit from the three classes Imx3d<Uchar>, Imx3d<Long>, Imx3d<Float>.
So, the generic function can be defined as a template function. Such a function can be called with
any image and region map types:

template <typename T1, typename T2>

The Pandore Handbook

3.1 Operator Programming

33

Errc Operator (const Imx3d<Ti> &ims , Imx3d<T2> &imd, int p) {
// Body
return SUCCESS;

The following example is the morphological erosion function for 2D images:

template <typename T>

Errc Erosion(const Img2d<T> &ims, Img2d<T> &imd, int connexity) {
Point2d p;
T min,val;

if (connexity != 4 && connexity != 8)
return FAILURE;
imd.Frame(0,1,1);
if (connexity == 4) {
for (p.y=1; p.y < ims.Width()-1; p.y++)
for (p.x=1; p.x < ims.Height()-1; p.x++) {
min=ims [p+v4[0]];
for (int v=1; v < 4; v++)
if ((val=ims[p+v4([v]] < min)
min = val;
imd[p] = min;
}
} else { // connexity == 8.
for (p.y=1; p.y <= ims.Height()-1; p.y++)
for (p.x=1; p.x < ims.Width()-1; p.x++) {
min=ims [p+v8[0]];
for (int v=1; v < 8; v++)
if ((val=ims[p+v8[v]] < min)
min = val;
imd[p] = min;
}
}
return SUCCESS;

3.1.3.2 Value Type For a given type of Pandore object T the field T

to its data type. For example:

Img2dsf::ValueType -> Float

template <typename T1, typename T2>
Errc Operator (const Imx3d<T1> &ims , Imx3d<T2> &imd, int p) {
for (int b=0; b<ims.Bands(); b++) {
T1::ValueType *ps=ims.Vector(b);
T2::ValueType *pd=imd.Vector(b);
for (; p<ims.Vector()+ims.VectorSize(); ps++,pd++) {
*pd = T2(*ps *2);
}
}
return SUCCESS;

: :ValueType gives access

3.1.3.3 Type Limits The two traits Limits<T>: :max() and Limits<T>: :min() return re-
spectively the maximum and the minimum values of the primitive type T (Uchar, Slong, Float....).

For example:

Limits<Ushort>::max() -> 65535
Limits<Img2duc::ValueType>: :max() -> 255

The Pandore Handbook

3.1 Operator Programming 34

3.1.3.4 Type Deductions Sometimes, it necessary to choose between two types. For exam-
ple, an algorithm can take two types T1 and T2 as inputs and returns a result type that is the
larger unsigned type between the two input types. This can be done using the trait Select:

1. Select<T1,T2>::LargestUnsigned: returns the largest unsigned of the two types;

2. Select<T1,T2>::LargestSigned: returns the largest signed of the two types;

3. Select<T1,T2>::SmallestUnsigned: returns the smallest unsigned of the two types.
4. Select<T1,T2>::SmallestSigned: returns the smallest signed of the two types;

5. Select<T1,T2>::Largest: returns the largest of the two types (signed > unsigned);

6. Select<T1,T2>::Smallest: returns the smallest of the two types (signed > unsigned).
For example:

Select<Uchar,Short>::LargestSigned -> returns Short
Select<Img3duc,Img3dsl>: :LargestSigned -> returns Img2sdl
Select<Uchar,Short>::LargestUnsigned -> Ushort
Select<Uchar,Char>::Largest -> Char
Select<Uchar,Char>::Smallest -> Uchar

3.1.4 The main() Function

The main() function is used to generate a standalone program with the operator. When the
operator is used as a function of another program then the main() must be discarded. That is
why the main() is enclosed between the two C directives #ifdef MAIN and #end. If the value of
macro MAIN is defined then the operator is compiled as a standalone program else simply as a
separate module.

3.1.4.1 Reading Inputs The function ReadArgs () makes the verification of the argument
command line and reads the input files and the parameters.

ReadArgs (argc,argv,PARC,FINC,FOUTC,&mask,objin,objs,objout,objd,parv,USAGE,MASK) ;

ReadArgs uses a set of constants that prototypes the operator command line:

e the text that describes the usage of the operator (USAGE);
e the number of parameters (PARC);
e the number of input Pandore files (FINC);

e the number of output Pandore files (FOUTC);
Parameters are accessible by two ways:

e By using classical argv[| array. Parameters are located from [1..PARC] if there is no mask
given, or [3..PARC+2] if there is a mask given.

e By using parv|] array. Parameters are located from [0..PARC-1] and are of type charx.

The Pandore Handbook

3.1 Operator Programming 35

3.1.4.2 Masking and Unmasking The masking operation allows to apply a same operator
to the whole image or to a determined part specified by a mask. The mask is a region map where
the pixels with label 0 indicate the masked part.

First of all, the input image is built with the given input image masked by the given region map.
All the pixel of the initial image that are masked by the region are set to 0, all the other are kept
with their initial value.

Then, the operator is applied on the whole image even on the masked pixels.

Finally, the output image is built by the unmasking operation on the processed image. The
output pixels are set with the new value if they are not masked or with their initial value if the
are masked.

Remarks:

Sometimes, the masking operation cannot be applied as such since some pixel values are
replaced by 0. For example:

e consider the mean operator: each pixel is replaced by the mean of all its direct neigh-
bours. However, the masking and unmasking operations produce incorrect pixel values
on boundaries of the mask since some neighbour pixels are set to 0. In that case, only
the unmasking operation must be operated.

e consider the binarization operation: the input and the output are of different types.
So the unmasking operation cannot be applied. Only the masking operation must be
applied.

The constant MASK is used to specify whether the masking and unmasking should be applied on
the given operator.

e MASK=0: neither masking nor unmasking operation allowed.
e MASK=1: both masking and unmasking operations allowed.
e MASK=2: only masking operation allowed.

e MASK=3: only unmasking allowed.

3.1.4.3 The Switch The switch control structure selects the convenient operator function
from the input objects. The type of object is known from the Type () member function.

switch(objs[0]->Type()){
case Po_Img2duc :{
}

3.1.4.4 Writing Outputs The function WriteArgs() creates the output results.

WriteArgs(argc,argv,PARC,FINC,FOUTC, &mask,objin,objs,objout,objd) ;

This function uses the same arguments than the ReadArgs function. This time, if MASK=1 or
MASK=3 then output images are unmasked before return.

To set the output result value, use:

Exit(result);

This value can be get by the command pstatus.

The Pandore Handbook

3.2 Application Programming 36

3.2 Application Programming
3.2.1 Application Programming

An application is a chain of operators. Because operators are available both as executable com-
mands and as C++ functions, an application can be built in two ways:

1. A script (any scripting language is available: Perl, Bash, Msdos, etc);

2. A C++ program.

Script should be preferred to C++ program during the prototyping phase. C++ program should
be preferred for the final product.

3.2.1.1 Application as C+—+ Program The C++ program consists in a sequence of oper-
ator calling, one after the other.

3.2.1.2 A Template File Here is a template file example for an image processing application:

~
*

-*x- mode: c++; c-basic-offset: 3 -*-

Copyright (c) 2013, GREYC.
All rights reserved

You may use this file under the terms of the BSD license as follows:

"Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

* Neither the name of the GREYC, mnor the name of its
contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."

For more information, refer to:
https://clouard.users.greyc.fr/Pandore/

* X X X ¥ X ¥ X ¥ K K K K K K K X X ¥ X ¥ X K K K K K X * ¥ * * ¥ *

*
~

#include <pandore.h>
using namespace pandore;

#undef MAIN

The Pandore Handbook

4 Preprocessor 37

// Inclusion of needed operators (Unix)
namespace MyOps{
#include "classe/operator.cpp"

}

#define USAGE "usage: %s [im_in|-] [im_out|-]1"
#define PARC 0 // Number of parameters
#define FINC 1 // Number of input images
#define FOUTC 1 // Number of output images

int main(int argc, char *argv[]) {

Pobject* mask; // The mask.

Pobject* objin[FINC + 1]; // The input objects;

Pobject* objs[FINC + 1]; // The source objects masked by the mask.
Pobject* objout [FOUTC + 1]; // The output objects.

Pobject* objd[FOUTC + 1]; // The result objects of the execution.
char* parv[PARC + 1]; // The input parameters.

ReadArgs(argc, argv, PARC, FINC, FOUTC, &mask, objin, objs, objout, objd, parv, USAGE);

// Read input image.

Img2duc* const ims=(Img2duc*)objs[0];
// Create output image

objd[0] = new Img2duc(ims->Props());
Img2duc* const imd=(Img2duc*)objd[0];

// Call of operator(s).
Errc result = MyOpos::Operator(xims, *imd, (float)atof (parv[0]));

WriteArgs(argc, argv, PARC, FINC, FOUTC, &mask, objin, objs, objout, objd);

Exit(result);
return 0O;

Inclusion of Operators The most simple way to build the application program is to include
directly the operator C++ file into the application file. To avoid conflicts with local name, each
inclusion should be encapsulated in a namespace.

For example, to include the meanfilter operator, use:

#undef MAIN
namepace meanfilter {
#include "morphology/meanfilter.cpp"

}

With such inclusion, it is now obvious to use the operator function. For instance:

result = meanfilter::MeanFilter(ims,imd,8);

4 Preprocessor

4.1 Preprocessing of operators

In order to increase the genericity of the operator functions, Pandore provides its own preprocessor.
The goal is to write only one operator function and then to generate several C++ functions, one
for each required type composition. The preprocessor will be used when the use of the hierarchy
is insufficient (see Hierarchy(p. 10)).

The Pandore Handbook

4.1 Preprocessing of operators 38

The preprocessor is written in Perl. It converts generic files (files suffixed by .cct or .ht) files into
C++ file. Pratically, it is called directly by the Makefile. To convert a .cct file into .cpp file or a
file .ht into file .h the Makefile uses the commands:

perl -Ietc/macros etc/macros/template.pl etc/macros/pand_macros file.cct > file.cpp
perl -Ietc/macros etc/macros/template.pl etc/macros/pand_macros file.ht > file.h

where etc/macros directory is a subdirectory of the Pandore directory.

The preprocessor recognizes lines beginning by ‘#+’. Lines beginning with ‘##;" are considered
as preprocessor comments and are discarded from the generated C++ file.

4.1.1 Generic Program Template File

A .cct file respects more or less the following template file:

~
*

-*x- mode: c++; c-basic-offset: 3 -*-

Copyright (c) 2013, GREYC.
A1l rights reserved

You may use this file under the terms of the BSD license as follows:

"Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

* Neither the name of the GREYC, nor the name of its
contributors may be used to endorse or promote products
derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."

For more information, refer to:
https://clouard.users.greyc.fr/Pandore/

* Ok X X X K K K K K K K X X K X ¥ X ¥ K K K K K K K K ¥ ¥ ¥ ¥ ¥ ¥ *

*
~

#include <pandore.h>
using namespace pandore;

##begin Operator (TYPE1l, VOISS)

Errc Operator(const TYPE1 &ims, TYPE1 &imd, Short nbvois) {
<Code...>
if (nbvois == VOISS)
<code...>
return SUCCESS;

The Pandore Handbook

4.1 Preprocessing of operators 39

}
append loadcases
if (objs[0]->Type() == Po_$TYPE1) {
TYPE1 *const ims=(TYPE1x)objs[0];
objd[0]=new TYPE1(ims->Props());
TYPE1 *const imd=(TYPE1x)objd[0];
result=0perator (¥ims,*imd, (Float)atof (parv[0]));
} else
end
##end

##; Generates Operator for Imgld<T>, Img2d<T> and Img3d<T>.
##forall (Operator,/Img.d/)

##; Generates Operator for Reg2d and Reg3d
##forall (Operator, /Reg[23]1d/)

#ifdef MAIN

#define USAGE "usage: %s connexity [-m mask] [im_in|-] [im_out]|-]"
#define PARC 1

#define FINC 1

#define FOUTC 1

#define MASK 0

##main (PARC,FINC,FOUTC,MASK, USAGE)

#endif

The template file is composed of three parts:

1. the body of the operator function enclosed between the ##begin and ##end macros.
2. the instanciation of the function realized by the ##forall macro;

3. the main generated by the ##main macro.

4.1.2 The ##Dbegin Macro

The code enclosed between the ##begin and ##end macros is duplicated as many times as it is
instantiated from Pandore objects. For example, the code can be instantiated from Img2duc,
Graph3d, Reg2d, ... In order to adapt the code from the various types of Pandore objects, the
begin macro has some parameters that are set during instanciation. These parameters defined
things like dimension, connexity, point and available loops from the type of the Pandore object.
For example, if the Pandore type, is a Img2duc then, the dimension is Dimension2d, the point is
Point2d and the loop is a double for loop.

The declaration of a generic function looks like the following command -A variable is included
only if it is used in the body of the function:

##tbegin Operator(TYPE, VOISL, POINT, DIM, LOOPP)

4.1.2.1 Parameters of the ##Dbegin Macro The list of available parameters is:

e DIM: the dimension type [Dimensionld, Dimension2d, Dimension3d].
e VOISS: the lower connexity type for the given dimension [2 in 1D, 4 in 2D and 6 in 3D]
e VOISL: the higher connexity type for the given dimension [2 en 1D, 8 in 2D and 26 in 3D]

e POINT: the point type [Point1d, Point2d, Point3d].

The Pandore Handbook

4.1

Preprocessing of operators 40

e LOOPP: the loop with a variable declared with the POINT type.

POINT p;
##LOOPP (ims,p)

generates for a 2D image:

Point2d p;
for (p.y=0; p.y<ims.Height(); p.y++)
for (p.x=0; p.x<ims.Width(); p.x++)

LOOPPIN: the inverse loop with a variable declared with the POINT type.

POINT p;
##LOOPPIN (ims,p)

generates for a 2D image:

for (p.y=ims.Height()-1; p.y>=0; p.y--)
for (p.x<ims.Width()-1; p.x>=0; p.x--)

LOOPPB: The inner loop with a variable declared with the POINT type and the size of
the border.

POINT p;
##LOOPPB(ims,p,5)

generates for a 2D image:

Point2d p;
for (p.y=5; p.y<ims.Height()-5; p.y++)
for (p.x=5; p.x<ims.Width()-5; p.x++)

LOOPPINB: The inner inverse loop with a variable declared with the POINT type and
the size of the border.

POINT p;
##LOOPPINB(ims,p,5)

generates for a 2D image:

Point2d p;
for (p.y=ims.Height()-5-1; p.y>= 5; p.y--)
for (p.x=ims.Width()-5-1; p.x>= 5; p.x--)

For example:

##tbegin Operator(TYPE, POINT, DIM, VOISL, LOOPP)
Errc Operator(TYPE &ims) {

POINT p;

Float sum=0.0F;

DIM d;

d=ims.Size();

TYPE imd;

imd.New(d) ;

##L0O0OPPB(ims,p,5) // Inner loop

{

The Pandore Handbook

4.1 Preprocessing of operators 41

for (v=0; v<VOISL; v++) // VOISL can be 8 for 2D or 26 for 3D.
sum += ims [p+v$VOISL[v])
}

imd [p]=sum/VOISL;
imd.Frame(ims,1);
return SUCCESS;

is instantiated as follows for an Img2duc image:

Errc Operator(Img2duc &ims) {
Point2d p;
Float sum=0.0F;
Dimension2d d;
d=ims.Size();
Img2duc imd;
imd.New(d) ;

for (p.y=5; p.y<ims.Height()-5; p.y++)
for (p.x=5; p.x<ims.Width()-5; p.x++)
{
for (v=0; v<8; v++)
sum += ims [p+v8[v])

}

imd [p]=sum/8;
imd.Frame (ims,1);
return SUCCESS;

}

Note:

The character $ can be used to separate a preprocessor variable from other words. For
instance, the word Po_TYPE must be rewritten as Po_$TYPE to be instantiated as Po Imx3dsf
if TYPE is Imx3dsf.

4.1.2.2 The #+#append Macro The append macro is used to add a case in the main()
switch. All the variables defined in the parameter list of the begin macro and the variables defined
in the main function can be used in the code between ##append and ##end macros. Most of the
append contents look like the following code:

##tbegin Operator(TYPE,...., LOOPPB, POINT)
append
if (objs[0]->Type()==Po_$TYPE) {
TYPE *const ims=(TYPE)objs[0];
objd[0]=new TYPE(ims->Props());
TYPE *const imd(TYPE)obd[0];
result=0perator (*ims,*imd, (TYPE: : ValueType) atof (parv[0]));
}
end
##end

The previous code will be instancied as follows if TYPE=Imx3dsf:

if (objs[0]->Type()==Po_Imx3dsf) {
Imx3dsf *const ims=(Imx3dsf)objs[0];
objd[0]=new Imx3dsf (ims->Props());
Imx3dsf*const imd(Imx3dsf)obd[0];
result=0perator (*ims,*imd, (Imx3dsf: :ValueType)atof (parv[0]));
}
end
##end

The Pandore Handbook

4.1 Preprocessing of operators 42

4.1.2.3 The ##forall Macro The macro ##forall is used to generate the list of operator
functions from the list of the chosen types. The parameters are the type of Pandore objects.

##forall (Operator,/typel/, /type2/, /type3/, ...)

The type can be specified by using regular expressions. For example:

##forall (Operator,/Imc[23]duc/,/Img2ds/)

generates:

##0perator (imc2duc, Img2dsl)
##0perator (imc2duc, Img2dsf)
##0perator (imc3duc, Img2dsl)
##0perator (imc3duc, Img2dsf)

4.1.3 The ##main macro
The main() function is generated from the macro ##main. The macro uses five parameters:
1. The string that describes the usage of operator.

2. The number of parameters;

The number of input Pandore files;

- W

The number of output Pandore files;

5. the value of the mask flag.
The easier way to parametrize this macro is to define constants as follows:

#ifdef MAIN

#define USAGE "USAGE: %s connexity [-m mask] [im_in|-][im_out]|-]"
#define PARC 1

#define FINC 1

#define FOUTC 1

#define MASK 3

##main (PARC,FINC,FOUTC,MASK,USAGE)
#endif

The contents of the macro ##append is added to the main() in the switch structure.

4.1.4 Example

Here is the complete source of the generic Add operator, which builds a new image (resp. a new
graph) from the pixel to pixel mean of two images (resp. node to node of two graphs).

#include <pandore.h>

##; Images

##begin Add(IMG1, IMG2, VARS, LOOPP, POINT)

Errc Add(IMG1 &imsl, IMG2 &ims2, Select<IMG1,IMG2>::Signed &imd) {
POINT p;

The Pandore Handbook

4.1 Preprocessing of operators

43

LOOPP(ims1,p)
imd[p]=(Select<IMG1,IMG2>::Signed: :ValueType) ((ims1[pl+ims2[p])/2);
return SUCCESS;

}

append loadcases
if ((objs[0]->Type() == Po_$IMG1) &&
(objs[1]1->Type() == Po_$IMG2)) {
IMG1* const ims1=(IMG1*)objs[0];
IMG2* const ims2=(IMG2*)objs[1];
objd[0]=new Select<IMG1,IMG2>::Signed(ims1->Size());

Select<IMG1,IMG2>::Signed*const imd=(Select<IMG1,IMG2>::Signed*)objd[0];

result=Add (*ims1,*ims2,*imd) ;
} else
end
##end

##; Graphs

##begin AddGraph(TYPE)

Errc Add(TYPE &gs1,TYPE &gs2,TYPE &gd) {
int i;

gd.Init(gsl);
for (i=1;i<=gd.size;i++)
if ((glil))
gd[il->attr=((gs1[i]->attr+gs2[i]l->attr)/2.0F);

return SUCCESS;
}
append loadcases
if ((objs[0]->Type() == Po_$TYPE) &&
(objs[1]->Type() == Po_$TYPE)) {
TYPE* const gs1=(TYPE#*)objs[0];
TYPE* const gs2=(TYPEx*)objs[1];
objd[0]=new TYPE(gs1->Size());
TYPE* const gd=(TYPE*)objd[0];
result=Add (*gsl,*gs2,*gd) ;
} else
end
##end

##forall (Add, Img2d, Img2d)
##forall (Add, Img3d, Img3d)
##forall (AddGraph,Graph)

#ifdef MAIN
##main(0,2,1,1,"USAGE: %s [-m mask] [im_in1|-] [im_in2|-] [im_out|-1")
#endif

The Pandore Handbook

Index

Char, 2 Imx3dsl, 9
Collection, 4, 27 Imx3duc, 9
collection, 27
Limits, 33
Dimension, 3 Long, 2
dimension, 5
Dimensionld, 5 MAIN, 34, 37
Dimension2d, 5 main(), 34
Dimension3d, 5 MASK, 35
Double, 2 Merge(), 27
Errce, 3 Name(), 4
namespace, 37
FAILURE, 3 NbOf(), 29
FINC, 34
Float, 2 operator(), 32
FOUTC, 34
Frame()’ 14, 21 PARC, 34
T pobject, 3

GETARRAY(), 28
GETARRAYSIZ(E), 28

PobjectProps, 4
Point, 3

GETNARRAYS(), 29 point, 7
GETPARRAYY(), 28 P0}nt1d, 7
GETPARRAYSIZE(), 28 PO}n‘ch7 7
GETPOBJECT(), 28 Point3d, 7
GETVALUE(), 28 Props(), 4
;;Zpﬁl ,241 readArgs, 34
Graph2d, 22 gggéj, }2
Graph3d, 22 g2d,
Reg3, 18
region, 18

Hold(), 14, 21

Region Map, 3

Image, 3

image, 9 SETARRAY(), 28
Tmc2dsf, 9 SETPARRAY(), 28
Imc2dsl, 9 SETPOBJECT(), 28
Imc2duc, 9 SETVALUE(), 28
Imc3dsf, 9 Shqrt, 2

Imc3dsl, 9 Split(), 27
Imc3duc, 9 SUCCESS, 3
Img2dsf, 9

Img2dsl, 9 ?ype](a); ‘Z
Img2duc, 9 ypobJ;

Tmg3ds, 9 Uchar, 2

Img3dsl, 9 Ulong, 2

Img3duc, 9 USAGE, 34
Imx2dsf, 9 Ushort, 2

Imx2dsl, 9

Imx2duc, 9 V26”, 17

Tmx3d, 10, 32 vi[], 16

Ingde, 9 V4X[], 16

INDEX

45

vdy[], 16

v6[], 17

v6x|], 17

veyll, 17

v6z[|, 17

v8|], 16

v8x|], 16

v8yl], 16
ValueType, 33
velll, 18
Vector(), 13, 20
Vector(band), 13
VectorX(), 13
VectorY(), 13
VectorZ(), 13

WriteArgs, 35

X(), 13, 20

The Pandore Handbook

